Search :
Sign in or Register  
Welcome Sign in or Don't have an account?Register

AGRN

AGRN is one of several proteins that are critical in the development of the neuromuscular junction (NMJ), as identified in mouse knock-out studies. The encoded protein contains several laminin G, Kazal type serine protease inhibitor, and epidermal growth
Full Name
Agrin
Function
Isoform 1: Heparan sulfate basal lamina glycoprotein that plays a central role in the formation and the maintenance of the neuromuscular junction (NMJ) and directs key events in postsynaptic differentiation. Component of the AGRN-LRP4 receptor complex that induces the phosphorylation and activation of MUSK. The activation of MUSK in myotubes induces the formation of NMJ by regulating different processes including the transcription of specific genes and the clustering of AChR in the postsynaptic membrane. Calcium ions are required for maximal AChR clustering. AGRN function in neurons is highly regulated by alternative splicing, glycan binding and proteolytic processing. Modulates calcium ion homeostasis in neurons, specifically by inducing an increase in cytoplasmic calcium ions. Functions differentially in the central nervous system (CNS) by inhibiting the alpha3-subtype of Na+/K+-ATPase and evoking depolarization at CNS synapses. This secreted isoform forms a bridge, after release from motor neurons, to basal lamina through binding laminin via the NtA domain.
Isoform 2: Transmembrane form that is the predominate form in neurons of the brain, induces dendritic filopodia and synapse formation in mature hippocampal neurons in large part due to the attached glycosaminoglycan chains and the action of Rho-family GTPases.
Isoform 1, isoform 4 and isoform 5: Neuron-specific (z+) isoforms that contain C-terminal insertions of 8-19 AA are potent activators of AChR clustering. Isoform 5, agrin (z+8), containing the 8-AA insert, forms a receptor complex in myotubules containing the neuronal AGRN, the muscle-specific kinase MUSK and LRP4, a member of the LDL receptor family. The splicing factors, NOVA1 and NOVA2, regulate AGRN splicing and production of the 'z' isoforms.
Isoform 3 and isoform 6: Lack any 'z' insert, are muscle-specific and may be involved in endothelial cell differentiation.
Agrin N-terminal 110 kDa subunit: Is involved in regulation of neurite outgrowth probably due to the presence of the glycosaminoglcan (GAG) side chains of heparan and chondroitin sulfate attached to the Ser/Thr- and Gly/Ser-rich regions. Also involved in modulation of growth factor signaling (By similarity).
Agrin C-terminal 22 kDa fragment: This released fragment is important for agrin signaling and to exert a maximal dendritic filopodia-inducing effect. All 'z' splice variants (z+) of this fragment also show an increase in the number of filopodia.
Biological Process
Animal organ morphogenesis
Clustering of voltage-gated sodium channels
Extracellular matrix organization
Glycosaminoglycan biosynthetic process
Glycosaminoglycan catabolic process
G protein-coupled acetylcholine receptor signaling pathway
Neuromuscular junction development
Positive regulation of filopodium assembly
Positive regulation of GTPase activity
Positive regulation of synaptic growth at neuromuscular junction
Positive regulation of transcription by RNA polymerase II
Receptor clustering
Retinoid metabolic process
Signal transduction
Synapse organization
Tissue development
Cellular Location
Isoform 1: Extracellular matrix. Synaptic basal lamina at the neuromuscular junction.
Isoform 2: Cell membrane; Synapse
Involvement in disease
Myasthenic syndrome, congenital, 8 (CMS8): A form of congenital myasthenic syndrome, a group of disorders characterized by failure of neuromuscular transmission, including pre-synaptic, synaptic, and post-synaptic disorders that are not of autoimmune origin. Clinical features are easy fatigability and muscle weakness. CMS8 is an autosomal recessive disease characterized by prominent defects of both the pre- and postsynaptic regions. Affected individuals have onset of muscle weakness in early childhood; the severity of the weakness and muscles affected is variable.
PTM
Contains heparan and chondroitin sulfate chains and alpha-dystroglycan as well as N-linked and O-linked oligosaccharides. Glycosaminoglycans (GAGs), present in the N-terminal 110 kDa fragment, are required for induction of filopodia in hippocampal neurons. The first cluster (Gly/Ser-rich) for GAG attachment contains heparan sulfate (HS) chains and the second cluster (Ser/Thr-rich), contains chondroitin sulfate (CS) chains. Heparin and heparin sulfate binding in the G3 domain is independent of calcium ions. Binds heparin with a stoichiometry of 2:1. Binds sialic acid with a stoichiometry of 1:1 and binding requires calcium ions (By similarity).
At synaptic junctions, cleaved at two conserved sites, alpha and beta, by neurotrypsin. Cleavage at the alpha-site produces the agrin N-terminal 110-kDa subunit and the agrin C-terminal 110-kDa subunit. Further cleavage of agrin C-terminal 110-kDa subunit at the beta site produces the C-terminal fragments, agrin C-terminal 90 kDa fragment and agrin C-terminal 22 kDa fragment. Excessive cleavage at the beta-site releases large amounts of the agrin C-terminal 22 kDa fragment leading to destabilization at the neuromuscular junction (NMJ).

Anti-AGRN antibodies

+ Filters
Loading...
Target: AGRN
Host: Mouse
Antibody Isotype: IgG1
Specificity: Rat, Mouse
Clone: V2-5182
Application*: IC, WB
Target: AGRN
Host: Mouse
Antibody Isotype: IgG1
Specificity: Rat, Mouse
Clone: V2-12539
Application*: WB, IF, IH, P
Target: AGRN
Host: Mouse
Antibody Isotype: IgM
Specificity: Human, Mouse, Rat
Clone: V2-180219
Application*: IC, IH, IP, WB
Target: AGRN
Host: Mouse
Antibody Isotype: IgG1
Specificity: Mouse, Rat
Clone: V2-180218
Application*: IH
Target: AGRN
Host: Mouse
Antibody Isotype: IgG1
Specificity: Mouse, Rat
Clone: V2-180217
Application*: IC, IF, IH, WB
More Infomation
For Research Use Only. Not For Clinical Use.
(P): Predicted
* Abbreviations
IFImmunofluorescence
IHImmunohistochemistry
IPImmunoprecipitation
WBWestern Blot
EELISA
MMicroarray
CIChromatin Immunoprecipitation
FFlow Cytometry
FNFunction Assay
IDImmunodiffusion
RRadioimmunoassay
TCTissue Culture
GSGel Supershift
NNeutralization
BBlocking
AActivation
IInhibition
DDepletion
ESELISpot
DBDot Blot
MCMass Cytometry/CyTOF
CTCytotoxicity
SStimulation
AGAgonist
APApoptosis
IMImmunomicroscopy
BABioassay
CSCostimulation
EMElectron Microscopy
IEImmunoelectrophoresis
PAPeptide Array
ICImmunocytochemistry
PEPeptide ELISA
MDMeDIP
SHIn situ hybridization
IAEnzyme Immunoassay
SEsandwich ELISA
PLProximity Ligation Assay
ECELISA(Cap)
EDELISA(Det)
BIBioimaging
IOImmunoassay
LFLateral Flow Immunoassay
LALuminex Assay
CImmunohistochemistry-Frozen Sections
PImmunohistologyp-Paraffin Sections
ISIntracellular Staining for Flow Cytometry
MSElectrophoretic Mobility Shift Assay
RIRNA Binding Protein Immunoprecipitation (RIP)
Online Inquiry