Search :
Sign in or Register  
Welcome Sign in or Don't have an account?Register

Mouse Anti-SMAD7 Recombinant Antibody (3G8) (CBMAB-A8335-LY)

Online Inquiry

Summary

Host Animal
Mouse
Specificity
Human
Clone
3G8
Antibody Isotype
IgG2a, κ
Application
WB, ELISA

Basic Information

Immunogen
SMAD7 (NP_005895, 302 a.a. ~ 400 a.a) full length recombinant protein with GST tag. MW of the GST tag alone is 26 KDa.
Specificity
Human
Antibody Isotype
IgG2a, κ
Clonality
Monoclonal
Application Notes
The COA includes recommended starting dilutions, optimal dilutions should be determined by the end user.

Formulations & Storage [For reference only, actual COA shall prevail!]

Format
Liquid
Purity
> 95% Purity determined by SDS-PAGE.
Storage
Store at +4°C short term (1-2 weeks). Aliquot and store at -20°C long term. Avoid repeated freezethaw cycles.

Target

Full Name
SMAD7
Entrez Gene ID
UniProt ID
Alternative Names
CRCS3; FLJ16482; MADH7; MADH8
Function
Antagonist of signaling by TGF-beta (transforming growth factor) type 1 receptor superfamily members; has been shown to inhibit TGF-beta (Transforming growth factor) and activin signaling by associating with their receptors thus preventing SMAD2 access. Functions as an adapter to recruit SMURF2 to the TGF-beta receptor complex. Also acts by recruiting the PPP1R15A-PP1 complex to TGFBR1, which promotes its dephosphorylation. Positively regulates PDPK1 kinase activity by stimulating its dissociation from the 14-3-3 protein YWHAQ which acts as a negative regulator.
Biological Process
Biological Process adherens junction assemblyManual Assertion Based On ExperimentIMP:BHF-UCL
Biological Process anatomical structure morphogenesisManual Assertion Based On ExperimentIBA:GO_Central
Biological Process artery morphogenesisISS:BHF-UCL
Biological Process BMP signaling pathwayManual Assertion Based On ExperimentIBA:GO_Central
Biological Process cell differentiationManual Assertion Based On ExperimentIBA:GO_Central
Biological Process cellular response to leukemia inhibitory factorIEA:Ensembl
Biological Process cellular response to transforming growth factor beta stimulusManual Assertion Based On ExperimentIMP:BHF-UCL
Biological Process negative regulation of BMP signaling pathwayManual Assertion Based On ExperimentIDA:BHF-UCL
Biological Process negative regulation of cell migrationManual Assertion Based On ExperimentTAS:BHF-UCL
Biological Process negative regulation of chondrocyte proliferationIEA:Ensembl
Biological Process negative regulation of DNA-binding transcription factor activityManual Assertion Based On ExperimentIDA:BHF-UCL
Biological Process negative regulation of epithelial to mesenchymal transitionManual Assertion Based On ExperimentTAS:BHF-UCL
Biological Process negative regulation of ossificationIEA:Ensembl
Biological Process negative regulation of pathway-restricted SMAD protein phosphorylationManual Assertion Based On ExperimentIDA:BHF-UCL
Biological Process negative regulation of peptidyl-serine phosphorylationManual Assertion Based On ExperimentIDA:BHF-UCL
Biological Process negative regulation of peptidyl-threonine phosphorylationManual Assertion Based On ExperimentIDA:BHF-UCL
Biological Process negative regulation of protein ubiquitinationManual Assertion Based On ExperimentIDA:BHF-UCL
Biological Process negative regulation of T cell cytokine productionISS:BHF-UCL
Biological Process negative regulation of T-helper 17 cell differentiationISS:BHF-UCL
Biological Process negative regulation of T-helper 17 type immune responseISS:BHF-UCL
Biological Process negative regulation of transcription by competitive promoter bindingManual Assertion Based On ExperimentIDA:BHF-UCL
Biological Process negative regulation of transcription by RNA polymerase IIManual Assertion Based On ExperimentIDA:BHF-UCL
Biological Process negative regulation of transforming growth factor beta receptor signaling pathwayManual Assertion Based On ExperimentIDA:BHF-UCL
Biological Process negative regulation of ubiquitin-protein transferase activityManual Assertion Based On ExperimentIDA:BHF-UCL
Biological Process pathway-restricted SMAD protein phosphorylationISS:BHF-UCL
Biological Process positive regulation of cell-cell adhesionManual Assertion Based On ExperimentIDA:BHF-UCL
Biological Process positive regulation of chondrocyte hypertrophyIEA:Ensembl
Biological Process positive regulation of proteasomal ubiquitin-dependent protein catabolic processManual Assertion Based On ExperimentIDA:BHF-UCL
Biological Process positive regulation of protein ubiquitinationManual Assertion Based On ExperimentIDA:BHF-UCL
Biological Process protein stabilizationManual Assertion Based On ExperimentIDA:BHF-UCL
Biological Process protein-containing complex localizationManual Assertion Based On ExperimentIDA:BHF-UCL
Biological Process regulation of activin receptor signaling pathwayManual Assertion Based On ExperimentIDA:BHF-UCL
Biological Process regulation of cardiac muscle contractionISS:BHF-UCL
Biological Process regulation of epithelial to mesenchymal transitionManual Assertion Based On ExperimentIMP:BHF-UCL
Biological Process regulation of transforming growth factor beta receptor signaling pathway1 PublicationIC:BHF-UCL
Biological Process regulation of ventricular cardiac muscle cell membrane depolarization1 PublicationIC:BHF-UCL
Biological Process response to laminar fluid shear stressManual Assertion Based On ExperimentIEP:BHF-UCL
Biological Process SMAD protein signal transductionManual Assertion Based On ExperimentIBA:GO_Central
Biological Process transforming growth factor beta receptor signaling pathwayManual Assertion Based On ExperimentIBA:GO_Central
Biological Process ureteric bud developmentIEA:Ensembl
Biological Process ventricular cardiac muscle tissue morphogenesisISS:BHF-UCL
Biological Process ventricular septum morphogenesisISS:BHF-UCL
Cellular Location
Nucleus
Cytoplasm
Interaction with NEDD4L or RNF111 induces translocation from the nucleus to the cytoplasm (PubMed:16601693).
TGF-beta stimulates its translocation from the nucleus to the cytoplasm. PDPK1 inhibits its translocation from the nucleus to the cytoplasm in response to TGF-beta (PubMed:17327236).
Involvement in disease
Colorectal cancer 3 (CRCS3):
A complex disease characterized by malignant lesions arising from the inner wall of the large intestine (the colon) and the rectum. Genetic alterations are often associated with progression from premalignant lesion (adenoma) to invasive adenocarcinoma. Risk factors for cancer of the colon and rectum include colon polyps, long-standing ulcerative colitis, and genetic family history.
PTM
Phosphorylation on Ser-249 does not affect its stability, nuclear localization or inhibitory function in TGFB signaling; however it affects its ability to regulate transcription (By similarity).
Phosphorylated by PDPK1.
Ubiquitinated by WWP1 (By similarity).
Polyubiquitinated by RNF111, which is enhanced by AXIN1 and promotes proteasomal degradation (PubMed:14657019, PubMed:16601693).
In response to TGF-beta, ubiquitinated by SMURF1; which promotes its degradation (PubMed:11278251).
Acetylation prevents ubiquitination and degradation mediated by SMURF1.
More Infomation
Ask a question We look forward to hearing from you.
0 reviews or Q&As
Loading...
Have you used Mouse Anti-SMAD7 Recombinant Antibody (3G8)?
Submit a review and get a Coupon or an Amazon gift card. 20% off Coupon $30 eGift Card
Submit a review
Loading...
For research use only. Not intended for any clinical use.

Custom Antibody Labeling

We also offer labeled antibodies developed using our catalog antibody products and nonfluorescent conjugates (HRP, AP, Biotin, etc.) or fluorescent conjugates (Alexa Fluor, FITC, TRITC, Rhodamine, Texas Red, R-PE, APC, Qdot Probes, Pacific Dyes, etc.).

Learn more

Documents

Online Inquiry